منوی اصلی
مجموعه مطالب مهندسی مواد و متالورژی
رشته مهندسی مواد، عاملی برای پیشرفت کشور عزیزمان ایران
  • امید اشکانی دوشنبه 5 مهر 1395 12:12 ق.ظ نظرات ()


    Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. Casting materials are usually metals or various cold setting materials that cure after mixing two or more components together; examples are epoxy, concrete, plaster and clay. Casting is most often used for making complex shapes that would be otherwise difficult or uneconomical to make by other methods.

    Casting is a 6000-year-old process. The oldest surviving casting is a copper frog from 3200 BC.

     

    Plaster and other chemical curing materials such as concrete and plastic resin may be cast using single-use waste molds as noted above, multiple-use 'piece' molds, or molds made of small rigid pieces or of flexible material such as latex rubber (which is in turn supported by an exterior mold). When casting plaster or concrete, the material surface is flat and lacks transparency. Often topical treatments are applied to the surface. For example, painting and etching can be used in a way that give the appearance of metal or stone. Alternatively, the material is altered in its initial casting process and may contain colored sand so as to give an appearance of stone. By casting concrete, rather than plaster, it is possible to create sculptures, fountains, or seating for outdoor use. A simulation of high-quality marble may be made using certain chemically-set plastic resins (for example epoxy or polyester) with powdered stone added for coloration, often with multiple colors worked in. The latter is a common means of making washstands, washstand tops and shower stalls, with the skilled working of multiple colors resulting in simulated staining patterns as is often found in natural marble or travertine.

     

    Casting process simulation uses numerical methods to calculate cast component quality considering mold filling, solidification and cooling, and provides a quantitative prediction of casting mechanical properties, thermal stresses and distortion. Simulation accurately describes a cast component’s quality up-front before production starts. The casting rigging can be designed with respect to the required component properties. This has benefits beyond a reduction in pre-production sampling, as the precise layout of the complete casting system also leads to energy, material, and tooling savings.

    The software supports the user in component design, the determination of melting practice and casting methoding through to pattern and mold making, heat treatment, and finishing. This saves costs along the entire casting manufacturing route.

    Casting process simulation was initially developed at universities starting from the early '70s, mainly in Europe and in the U.S., and is regarded as the most important innovation in casting technology over the last 50 years. Since the late '80s, commercial programs (such as AutoCAST and MAGMA) are available which make it possible for foundries to gain new insight into what is happening inside the mold or die during the casting process.

     

    From : Wikipedia.com

    آخرین ویرایش: دوشنبه 5 مهر 1395 12:13 ق.ظ
    ارسال دیدگاه
  • امید اشکانی سه شنبه 25 خرداد 1395 11:31 ب.ظ نظرات ()

    روکش کردن فولاد (برای محافظت در برابر خوردگی) با روی به روشهای زیر انجام می‌شود:

    فلز را داخل روی مذاب فرو می‌بریم.
    روی مذاب را بر قطعهٔ فولادی می‌پاشیم.
    فولاد را در پودر داغ روی وارد کرده پوشش می‌دهیم.
    از الکترولیز استفاده می‌کنیم.

    در روش فروبردن در فلز مذاب، فولاد را با حمام کردن در اسید تمیز می‌کنند، آن گاه در روی مذاب یا آلیاژ مذاب آهن و روی، فرو می‌برند. روکش روی به عنوان مرزی فیزیکی بین فولاد و محیط آن عمل کرده و از آن محافظت می‌کند و اگر خراش بر دارد، روی خورده می‌شود و فولاد سالم می‌ماند. آلیاژ آهن و روی سطح بهتری برای رنگ کردن یا جوش کاری ایجاد می‌کند. دوام فولاد روکش دار به ضخامت روکش استاندارد:۲۷۰گرم بر متر مربع یعنی ۱۳۷/۵ در هر رو، و محیط بستگی دارد. موقعیت ساحلی و محیط‌های صنعتی که ترکیبات نمکی و دی اکسید گوگرد بالایی در هوای آنها وجود دارد می‌توانند پوسیدگی سریعی ایجد کنند. قلیاییهای موجود در سیمان، قیر و ملات‌های آهکی روکش دار، روی را می‌خورند، ولی در حالت خشک، خوردگی آرام است، در هر حال کلرید کلسیم که بعنوان زود گیر به ملاتها اضافه می‌شود بسیار خورنده است و باید به میزان کم استفاده شود.

    این فولاد با پوششی متشکل از۵۵ در صد آلومینیم و ۵/۴۳ درصد روی و ۵/۱ درصد سیلیسیم بادوام تر از فولاد پوشیده شده با همان ضخامت از روی خالص است و می‌توان آن را بدون محافظت بیشتر در محیط‌های معمولی استفاده کرد. این آلیاژ بعنوان زیرسازی برای بعضی پوشش‌های ارگانیک استفاده می‌شود.

    سرب و حلب سربی، آلیاژی از سرب و قلع به عنوان سطوح نهایی برای فولاد و فولاد ضد زنگ برای کارهای روکش کاری و سقف سازی استفاده می‌شوند. این فولادها نسبت به پیل‌های دو قطبی مقاوم است و می‌توان آنها را در تماس با سرب، مس، آلومینیم یا روی به کار برد. جابجایی (انقباض و انبساط) گرمایی آن مانند فولاد ضد زنگ است و می‌توان قطعاتی تا ۹ متر طول را برای سقف یا روکش کاری استفاده کرد. همچنین برای پوشش نهایی سقف مناسب است. بخاطر مقاومت فولاد ورق را می‌توان برای قسمت‌های خود ایستایی افقی، پوشش زیرین سازه‌ها، آب روها و قطعات تا شده بکار برد.


    آخرین ویرایش: سه شنبه 25 خرداد 1395 11:38 ب.ظ
    ارسال دیدگاه
  • امید اشکانی جمعه 7 خرداد 1395 11:22 ق.ظ نظرات ()

    چُدَن
    به آلیاژهایی از آهن و کربن که بین ۲٫۱الی ۶٫۲ درصد کربن داشته باشند، گفته می‌شود. رنگ مقطع شکست این آلیاژ به عنوان شناسه نامگذاری انواع مختلف آن به کار می‌رود. بیش از ۹۵ درصد وزنی چدن را آهن تشکیل می‌دهد و عناصر آلیاژی اصلی آن کربن و سیلیسیم هستند. به طور معمول بین ۲٫۱ تا ۴ درصد کربن و ۱ تا ۳ درصد سیلیسیم دارد و به عنوان آلیاژی سه‌گانه شناخته می‌شود. با این وجود، انجماد آن از روی دیاگرام فازی دوتایی آهن-کربن بررسی می‌شود. جایی که نقطه یوتکتیک در دمای ۱۱۵۴ درجه سانتی گراد و ۴٫۳ درصد کربن اتفاق می‌افتد که حدود ۳۰۰ درجه کمتر از نقطه ذوب آهن خالص است. چدنها، به استثنا نوع داکتیل، ترد هستند و به دلیل نقطه ذوب پایین، سیالیت، قابلیت ریخته گری، ماشین کاری، تغییرشکل ناپذیری و مقاومت به سایش به موادی مهندسی با دامنه وسیعی از کاربرد تبدیل شده و در تولید لوله‌ها، ماشینها، قطعات صنعت خودرو مانند سرسیلندر، بلوک سیلندر و جعبه دنده به کار می‌روند. چدن همچنین به تضعیف و تخریب ناشی از اکسایش (خوردگی) مقاوم است.

    چدن از طریق ذوب مجدد سنگ آهن به همراه آهن و فولاد قراضه بدست می‌آید و با طی مراحلی برای حذف عناصر ناخواسته مانند فسفر و گوگرد همراه است. بسته به نوع کاربرد، میزان کربن و سیلیسم تا حد مطلوب (به ترتیب ۲ تا ۳٫۵ و ۱ تا ۳ درصد وزنی) کاهش داده می‌شوند. سایر عناصر نیز حین ریخته گیری و قبل از شکل گیری نهایی، به مذاب افزوده می‌شوند. چدن به جز موارد خاص که در کوره بلند موسوم به کوره کوپل ذوب می‌شود، عمدتاً در کوره‌های القای الکتریکی تولید می‌گردد. پس از تکمیل ذوب، مذاب به کوره نگهدارنده یا قالب ریخته می‌شود.

    خواص چدن با افزودن عناصر آلیاژی مختلف تغییر می‌کند. بعد از کربن، سیلیسیم مهمترین عنصر محسوب می‌شود چرا که کربن را از حالت محلول خارج کرده، آن را به فرم گرافیت درمی آورد که تولید چدنی نرمتر، با انقباض کمتر کرده، استحکام و چگالی را کاهش می‌دهد. گوگرد نیز هنگام اضافه شدن سولفید آهن تولید می‌کند که مانع تشکیل گرافیت شده سختی را افزایش می‌دهد. مشکل گوگرد اینست که گرانروی چدن را در حالت مذاب بالا برده و عیوب ساختاری را افزایش می‌دهد. برای خنثی کردن اثرات گوگرد از منگنز استفاده می‌شود تا به جای سولفید آهن، سولفید منگنز تشکیل شود. سولفید منگنز از مذاب سبکتر است بنابراین برروی سطح مذاب و درون سرباره شناور می‌شود. مقدار منگنز مورد نیاز برای خنثی کردن گوگرد برابر است با ۱٫۷*مقدار گوگرد+۰٫۳٪. افزودن منگنز بیش از این مقدار باعث تولید کاربید منگنز می‌شود که خود به بالا رفتن سختی و سرعت انجماد منجر می‌شود. تنها در مورد چدن خاکستری افزایش منگنز تا یک درصد استحکام و چگالی را افزایش می‌دهد.

    نیکل نیز از آلیاژسازهای بسیار معمول است که ساختار پرلیت و گرافیت را پالایش داده به افزایش چقرمگی کمک می‌کند و گاه حتی تفاوت سختی در ضخامتهای مختلف را از بین می‌برد. کروم به مقدار جزیی به ملاقه مذاب افزوده می‌شود تا گرافیت آزاد را کاهش داده، مذاب را سرد کند و از آنجا که تثبیت کننده قوی کاربید به شمار می‌رود عمدتاً همراه با نیکل افزوده می‌شود. مقدار بسیار اندکی قلع را نیز می‌توان به جای ۰٫۵درصد کروم افزود. بین ۰٫۵ تا ۲٫۵درصد مس هم در ملاقه یا کوره به مذاب اضافه می‌شود تا انجماد را کاهش، گرافیت را پالایش و سیالیت را افزایش دهد. افزودن ۰٫۳ تا ۱ درصد مولیبدن باعث افزایش انجماد، پالایش گرافیت و پرلیت می‌شود و معمولاً همراه با نیکل مس و کروم افزوده می‌شود تا خواص استحکامی را بهبود بخشد. تیتانیوم به عنوان گاززدا و اکسیدزدا استفاده می‌شود اما سیالیت را هم افزایش می‌دهد. اضافه نمودن ۰٫۱۵ تا ۰٫۵درصد وانادیوم، سمنتایت را تثبیت کرده سختی و مقاومت به سایش و گرما را افزایش می‌دهد. همچنین افزودن ۰٫۱ تا ۰٫۳ درصد زیرکنیوم به تشکیل گرافیت، احیا و افزایش سیالیت منجر می‌شود. به مذاب چدن مالیبل، حدود ۰٫۰۰۲ تا ۰٫۰۱ درصد وزنی بیسموت اضافه می‌شود تا بتوان سیلیسیم درصد سیلیسیم را افزایش داد. در چدن سفید عنصر بور به منظور تولید شدن چدن مالیبل افزوده می‌شود تا از اثر زمخت شدن در اثر وجود بیسموت کاسته شود.


    چدن خاکستری ریزساختار گرافیتی خاصی دارد که باعث می‌شود مقطع شکست آن به رنگ خاکستری باشد. در این نوع چدن‌ها تمامی یا قسمت اعظم کربن بصورت آزاد (گرافیت) رسوب می‌کند. از نظر وزنی رایج‌ترین نوع چدن و پرکاربردترین ماده ریخته گری محسوب می‌شود. چدن خاکستری عمدتاً حاوی ۲٫۵ تا ۴ درصد کربن، ۱ تا ۳ درصد سیلیسیم و مابقی آهن است. این نوع چدن استحکام کششی و مقاومت به شوک کمتری نسبت به فولاد دارد اما از نظر استحکام فشاری با فولاد کربنی کم و میان کربن قابل مقایسه است.


    چدن سفید از میزان کربن کمتر و سرعت سرد کردن بیشتر حاصل می‌شود جاییکه بخش عمده کربن بصورت فاز نیمه پایدار Fe۳C (سمنتیت) رسوب می‌کند تا کربن آزاد (گرافیت). مقطع شکسته شدهٔ این نوع چدن‌ها سفید نقره‌ای رنگ است. سمنتیت رسوب کرده از مذاب ذرات بزرگی در فاز یوتکتیک شکل می‌دهد. فاز دیگر این نوع چدن آستنیت است که طی فرایند انجماد به مارتنزیت تبدیل می‌شود. این کاربیدهای یوتکتیک درشتتر از آن هستند که سخت گردانی رسوبی ایجاد کنند (مانند برخی فولادها که رسوب سمنتیت، با ممانعت از حرکت نابجاییها در فاز زمینه فریت، از تغییر شکل پلاستیک جلوگیری می‌کند). اما تا حدودی به دلیل سختی خود ذرات سمنتیت که بخشی از حجم ماده را اشغال می‌کنند، سختی کل افزایش می‌یابد بطوریکه سختی چدن سفید بر اساس قانون مخلوطها برآورد می‌شود. در هر صورت سمنتیت‌ها سختی را افزایش و چقرمگی را کاهش می‌دهند. از آنجا که کاربید بخش بزرگی از ماده را می‌گیرد، چدن سفید را می‌توان نوعی سرمت به حساب آورد. چدن سفید برای بسیاری مصارف بیش از حد ترد است ولی به لطف سختی خوب، مقاومت به سایش بالا و قیمت پایین در ساخت قطعاتی چون سطوح در معرض سایش (مانند پروانه توربین)

    در سیستم آهن-کربن پایدار، تمامی کربن بصورت گرافیت ظاهر می‌شود.

    چدن مالیبل یا چدن چکش خوار، ذاتا از نوع چدن های هیپو یوتکتیکی کم آلیاژی یا غیر آلیاژی هستند. جهت ایجاد گرافیت های کروی فشرده و حصول خواص مکانیکی مانند استحکام و چکش خواری، عملیات آنیل کردن انجام می گیرد. پس از ریخته گری، کربن این چدن ها به شکل ترکیبی (ترکیب با آهن) بوده و قطعات به صورت چدن سفید در آمده که با فرایند حرارتی بخصوصی به چدن مالیبل تبدیل می شوند.

    کربن این نوع چدن بیشتر به‌صورت کره ‌هایی (کلوخه‌) از گرافیت و با اشکال نامنظم می‌باشد (شکل زیر). چدن چکش‌خوار ابتدا به‌ صورت چدن سفید و با ترکیب شیمیایی مناسب ریخته می‌ شود. سپس به هنگام آنیل از سمنتیت چدن سفید، گرافیت جوانه‌ زده و به‌ صورت کروی رشد می‌کند. با تغییر دادن عملیات آنیل، می‌توان چدن چکش‌ خوار با خواص مکانیکی مختلف به‌ دست آورد، از آنجا که ابتدا برای تولید چدن سفید انجماد سریعی لازم است لذا ضخامت قطعات چدن چکش‌ خوار محدود است.

    پس از اتمام مرحله اول آنیل، ساختار دارای کربن برفکی در زمینه آستنیت اشباع شده از کربن بوده و در مرحله دوم می توان با تنظیم سرعت سرد کردن ساختار را از فریت تا پرلیت تغییر داد. شکل گرافیت در چدن مالیبل (چکش خوار) کروی نبوده و به شکل برفکی می باشد.

    برای ساخت پل، لوله‌ها، درپوش چاه‌های خیابان، ماشین آلات و بسیاری چیزهای دیگر تا زمان جایگزین شدن استیل استفاده می‌شد. شکل توسعه یافته اش به عنوان خرپای سقف، شاقول کردن، خطوط گازی و هم چنین پنجره‌های دکوراتیو استفاده می شده است.

    چدن دارای مزیت‌ها و معایبی در معماری است. در فشرده سازی قوی و در کشش و خمش ضعیف است. مقاومت و سختی آن مخصوصا در حرارت بالا (هنگام آتش‌سوزی) بسیار پایین می‌آید.


    https://upload.wikimedia.org/wikipedia/commons/a/a1/Metal_and_alloy_graph_in_Persian_language.JPG


    آخرین ویرایش: جمعه 7 خرداد 1395 11:56 ق.ظ
    ارسال دیدگاه
  • امید اشکانی سه شنبه 11 اسفند 1394 04:05 ب.ظ نظرات ()


    ریخته گری پیوسته روش ریخته گری است که در آن مذاب از انتهای تاندیش (tundish) به قالب به طور مداوم ریخته میشود. مراحل انجماد و خروج محصول پیوسته بوده و ابعاد قالب محدود کننده ابعاد بیلت تولیدی می باشد.

    تکنولوژی ریخته گری مستمر، برای آلیاژهای آهنی و غیر آهنی مورد استفاده قرار میگیرد.بستگی به موقعیت های قالب (عمودی یا افقی) ماشین آلات ریخته گری پیوسته هم عمودی یا افقی نامیده می شوند.

    محصول ریخته گری پیوسته نه تنها باید از نظر ابعاد دقیق باشد بلکه باید از جنبه کیفی نیز تنوع داشته باشد. از جنبه های کیفی آن می توان به تمیز بودن ، نداشتن ترک سطحی و نداشتن ناخالصی ها به شرح زیر اشاره نمود.

    در ریخته گری پیوسته انجماد سریع، فلوتاسیون محتویات غیر فلزی در رشته ها را نسبتا به تاخیر می اندازد . این محتویات میتواند منتهی به تشکیل مناظق ضعیفی یا سستی گردد که در فرایند بیشتر مشکلاتی را ایجاد می کند.

    ریخته گری پیوسته عمودی

    ریخته گری فولاد معمولا در ماشین آلات پیوسته عمودی انجام می پذیرد . در این روش فلز مذاب ، به صورت مداوم از انتها با سرعت و وزن ثابت (با تحت کنترل نگه داشتن سطح مذاب) به قالب ریخته می شود که قالب مسی بوده و با آب سرد میشود(منطقه خنک کننده اولیه). سرد شدن مذاب باعث می شود شکل آن جامد به موازات حرکت عمودی به خود بگیرد. حرکت نوسانی که قالب دارد از چسبیدن آن به مذاب جلوگیری می نماید.

    وقتی محصول ریخته گری از قالب بیرون می رود در منطقه خنک کننده ثانویه آب ( یا آب با هوا) که بر روی سطح ریخته گری اسپری می گردد سرد میشود.

    فرایند تولید در CCM

    ccm

     

    1- انتقال مذاب از کوره به تاندیش

    2- انتقال مذاب از تاندیش به قالب

    3- شکل گیری بیلت توسط قالب مسی

    4- انتقال بیلت با کشاننده هلالی

    5- هدایت بیلت توسط غلتک های هیدرولیکی دامی بار

    6- انتقال بیلت به سیستم خنک کننده توسط افشانک های آب پاش

    آخرین ویرایش: سه شنبه 11 اسفند 1394 04:14 ب.ظ
    ارسال دیدگاه
تعداد صفحات : 9 1 2 3 4 5 6 7 ...
ساخت وبلاگ در میهن بلاگ

شبکه اجتماعی فارسی کلوب | اخبار کامپیوتر، فناوری اطلاعات و سلامتی مجله علم و فن | ساخت وبلاگ صوتی صدالاگ | سوال و جواب و پاسخ | رسانه فروردین، تبلیغات اینترنتی، رپرتاژ، بنر، سئو