تبلیغات
مجموعه مطالب مهندسی مواد و متالورژی - مطالب مهر 1396
منوی اصلی
مجموعه مطالب مهندسی مواد و متالورژی
رشته مهندسی مواد، عاملی برای پیشرفت کشور عزیزمان ایران
  • امید اشکانی پنجشنبه 20 مهر 1396 01:40 ب.ظ نظرات ()

    خوردگی حفره‌ای نوعی خوردگی موضعی می‌باشد که باعث ایجاد حفره‌های کوچک در فلزات می‌شود. عامل این پدیده، نرسیدن اکسیژن به بخش کوچکی از سطح می‌باشد. در این شرایط، این بخش نقش آند را بازی می‌کند و بخشی که دارای اکسیژن بالا است، نقش کاتد را ایفا می‌کند که حاصل آن ایجاد خوردگی گالوانیک می‌باشد.

    در این نوع خوردگی محصولات خوردگی به پیشرفت واکنش کمک می‌کند. این نوع خوردگی، موجب سوراخ شدن سطح فلز می‌شود و به علت این که حفره‌های به وجود آمده به راحتی قابل مشاهده نیست، از مخرب‌ترین انواع خوردگی است. شروع خوردگی حفره‌ای دارای دوره طولانی است؛ اما بعد از شروع حفره با سرعت زیادی نفوذ می‌کند.

    مکانیزم این نوع خوردگی مشابه با خوردگی شیاری است؛ ولی در این جا، خوردگی از زیر سطح شروع نمی‌شود؛ بلکه خوردگی در سطح صاف است.

    کار سرد که موجب اجتماع استرس (نیرو) می‌شود و افزایش لحظه‌ای دمای یک قسمت از قطعه و عدم یکنواختی ساختار که شامل مرز دانه‌ها و نقاط چند فازی و … است می‌تواند تولید آند و کاتدهای موضعی کند که می‌تواند عامل شروع خوردگی حفره‌ای باشد. در فلزاتی که بر روی خود لایه‌های سطحی ایجاد می‌کنند مانند فولاد زنگ نزن و آلومینیوم دارای شدت بیشتری است.

    حرکت محیط موجب می‌شود اکسیژن به داخل حفره تزریق شده و از مرحله دوم خوردگی جلوگیری شود به طوریکه واکنش کاتدی به بیرون حفره انتقال می‌یابد.

    پارامترهای متالورژیکی: محلول‌های جامد تک‌فار مقاومت به خوردگی بیشتری دارند.

    بعلت اینکه حفره دار شدن وزن زیادی از فلز را کاهش نمی‌دهد اندازه‌گیری وزنی را برای مقایسه آن نمی‌توان به کار برد. اندازه‌گیری دقیق عمیق حفره‌ها به علت پراکندگی و تعداد زیاد آنها هم امکان‌پذیر نیست.


    منبع : ویکی پدیا.

    از کلیه عزیزانی که منبع متون را در نوشته های خود ذکر می کنند سپاسگزاریم. ذکر کردن منبع متن یکی از بهترین روشها برای حفظ اصالت نوشته می باشد.



    آخرین ویرایش: پنجشنبه 20 مهر 1396 01:52 ب.ظ
    ارسال دیدگاه
  • امید اشکانی یکشنبه 16 مهر 1396 12:00 ب.ظ نظرات ()

     "استانداردهای ریخته گری"

    Steel_Founders'_Society_of_America _Steelpedia.ir


     "اثر عناصر آلیاژی در چدن خاکستری و نحوه افزودن آنها به مذاب"

    Effects_levels_and_sources_of_steelpedia.ir

     

    "ترکیب معمول چدنهای داکتیل و استاندارد رفرنس بر اساس ASTM"

    Compositions_and_general_uses_steelpedia.ir

     

    "ریخته گری برنزهای آلومینیوم"

    Cast Aluminum Bronzes - Steelpedia.ir

     

    "ذوب و ریخته گری آلیاژهای مس"

    Melting and Casting of Copper Alloys - steelpedia.ir



    با تشکر از سایت SteelPedia.ir

    منبع : SteelPedia.ir

    آخرین ویرایش: یکشنبه 16 مهر 1396 12:07 ب.ظ
    ارسال دیدگاه
  • امید اشکانی سه شنبه 11 مهر 1396 08:19 ق.ظ نظرات ()

    A ceramic is an inorganic, non-metallic, solid material comprising metal, non-metal or metalloid atoms primarily held in ionic and covalent bonds. This article gives an overview of ceramic materials from the point of view of materials science.

    The crystallinity of ceramic materials ranges from highly oriented to semi-crystalline, vitrified, and often completely amorphous (e.g., glasses). Most often, fired ceramics are either vitrified or semi-vitrified as is the case with earthenware, stoneware, and porcelain. Varying crystallinity and electron consumption in the ionic and covalent bonds cause most ceramic materials to be good thermal and electrical insulators (extensively researched in ceramic engineering). With such a large range of possible options for the composition/structure of a ceramic (e.g. nearly all of the elements, nearly all types of bonding, and all levels of crystallinity), the breadth of the subject is vast, and identifiable attributes (e.g. hardness, toughness, electrical conductivity, etc.) are hard to specify for the group as a whole. General properties such as high melting temperature, high hardness, poor conductivity, high moduli of elasticity, chemical resistance and low ductility are the norm,with known exceptions to each of these rules (e.g. piezoelectric ceramics, glass transition temperature, superconductive ceramics, etc.). Many composites, such as fiberglass and carbon fiber, while containing ceramic materials, are not considered to be part of the ceramic family.

    The earliest ceramics made by humans were pottery objects (i.e. pots or vessels) or figurines made from clay, either by itself or mixed with other materials like silica, hardened, sintered, in fire. Later ceramics were glazed and fired to create smooth, colored surfaces, decreasing porosity through the use of glassy, amorphous ceramic coatings on top of the crystalline ceramic substrates.[3] Ceramics now include domestic, industrial and building products, as well as a wide range of ceramic art. In the 20th century, new ceramic materials were developed for use in advanced ceramic engineering, such as in semiconductors.

    The word "ceramic" comes from the Greek word κεραμικός (keramikos), "of pottery" or "for pottery",[4] from κέραμος (keramos), "potter's clay, tile, pottery".[5] The earliest known mention of the root "ceram-" is the Mycenaean Greekke-ra-me-we, "workers of ceramics", written in Linear B syllabic script.[6] The word "ceramic" may be used as an adjective to describe a material, product or process, or it may be used as a noun, either singular, or, more commonly, as the plural noun "ceramics"

    A ceramic material is an inorganic, non-metallic, often crystalline oxide, nitride or carbide material. Some elements, such as carbon or silicon, may be considered ceramics. Ceramic materials are brittle, hard, strong in compression, weak in shearing and tension. They withstand chemical erosion that occurs in other materials subjected to acidic or caustic environments. Ceramics generally can withstand very high temperatures, such as temperatures that range from 1,000 °C to 1,600 °C (1,800 °F to 3,000 °F). Glass is often not considered a ceramic because of its amorphous (noncrystalline) character. However, glassmaking involves several steps of the ceramic process and its mechanical properties are similar to ceramic materials.

    Traditional ceramic raw materials include clay minerals such as kaolinite, whereas more recent materials include aluminium oxide, more commonly known as alumina. The modern ceramic materials, which are classified as advanced ceramics, include silicon carbide and tungsten carbide. Both are valued for their abrasion resistance, and hence find use in applications such as the wear plates of crushing equipment in mining operations. Advanced ceramics are also used in the medicine, electrical, electronics industries and body armor.

    Crystalline ceramic materials are not amenable to a great range of processing. Methods for dealing with them tend to fall into one of two categories – either make the ceramic in the desired shape, by reaction in situ, or by "forming" powders into the desired shape, and then sintering to form a solid body. Ceramic forming techniques include shaping by hand (sometimes including a rotation process called "throwing"), slip casting, tape casting (used for making very thin ceramic capacitors, e.g.), injection molding, dry pressing, and other variations. Details of these processes are described in the two books listed below. A few methods use a hybrid between the two approaches.

    Crystalline ceramic materials are not amenable to a great range of processing. Methods for dealing with them tend to fall into one of two categories – either make the ceramic in the desired shape, by reaction in situ, or by "forming" powders into the desired shape, and then sintering to form a solid body. Ceramic forming techniques include shaping by hand (sometimes including a rotation process called "throwing"), slip casting, tape casting (used for making very thin ceramic capacitors, e.g.), injection molding, dry pressing, and other variations. Details of these processes are described in the two books listed below.A few methods use a hybrid between the two approaches.


    آخرین ویرایش: سه شنبه 11 مهر 1396 09:43 ق.ظ
    ارسال دیدگاه
  • امید اشکانی دوشنبه 10 مهر 1396 10:08 ق.ظ نظرات ()


    توان یا گشتاور: کدام یک اهمیت بیشتری دارد؟ این پرسش آغاز مباحثه ای ناتمام برای سازندگان موتور و تولید کنندگانی است که در این زمینه فعالیت می کنند. برخی اعتقاد دارند که این گشتاور خودرو است که آن را به حرکت در می آورد اسب بخار بیشتر جنبه تبلیغاتی دارد تا خودروی بیشتری بفروشند. برخی هم می گویند اگر یک خودروی سریع می خواهید بهتر است به فکر اسب بخار (منظور همان توان است که به صورت تجاری واحد اسب بخار را برای آن استفاده می کنند.) باشید.

    و در این میان تناقضات بسیاری به گوش می رسد. اما کدام یک درست می گویند؟ اگر بخواهیم در این باره شفاف تر صحبت کنیم باید بگویم همه چیز از مفهموم نیرو و کار شروع می شود.

    آشنایی با مفهوم کار

    نیرو همان چیزی است که هنگام هل دادن یکی نسبت به دیگری احساس می شود و بسته به مقاومتی که در برابر آن ظاهر می شود ممکن است منجر به حرکت شود یا نشود. اگر بخواهید خودرویی را به تنهایی هل بدهید به احتمال زیاد حرکتی نخواهد داشت چون جرم آن بسیار بیشتر از شماست و نیروی مقاوم بسیار بیشتری در برابر نیروی شما اعمال می شود که نمی توانید بر آن غلبه کنید. به این ترتیب خودرو حرکتی هم نخواهد داشت.

    اما اگر نیرو اعمال شود و جابجایی داشته باشید در حقیقت کار انجام داده اید. به عبارت دیگر به اندازه جابجایی جسمی از نقطه A تا نقطه B کار انجام داده اید. به عنوان مثال اگر موتور یک خودرو را که 250 کیلو وزن دارد به کمک جرثقیل 1.5 متر جابجا کنید کاری که انجام داده اید برابر 1.5×250 است.

    کار = جابجایی x نیروی اعمال شده


    برای مطالعه بیشتر بر روی ادامه مطلب کلیک کنید.

    آخرین ویرایش: دوشنبه 10 مهر 1396 11:04 ق.ظ
    ارسال دیدگاه
تعداد صفحات : 2 1 2